Foro de modelismo escala N

Versión completa: Vias
Actualmente estas viendo una versión simplificada de nuestro contenido. Ver la versión completa con el formato correcto.
Hola otra vez me estoy haciendo una maqueta con via fleischmann sin balasto alguien me puede decir como puedo saber las cuerdas de las curvas gracias
No sé muy bien para qué quieres saber las cuerdas.
En una curva completa de 180º, las cuerdas equivalen al diámetro, y varían para cada tipo de curva según esta tabla de radios y diámetros:

R1= r 194.6 - d 389.2
R2= r 228.2 - d 456.4
R3= r 261.8 - d 523.6
R4= r 329 - d 658
R5= r 362.6 - d 725.2

Si quieres conocer la cuerda de un tramo suelto, ésta varía según el ángulo, que puede ser de 30º, 15º, 24º, 12º o 6º, según el tramo que elijas.
La fórmula sería:
K=2 · r · sen α/2
(aunque no sé la utilidad...)
[img][/img]
Entiendo que quieres saber que vehículo pueden circular correctamente midiendo la cuerda de las curvas con la distancia entre ejes....o algo parecido.

En la carretera es ideal conocer las cuerdas, pues en un rallye si las tienes bien marcadas, puedes ganar tiempos importantes. Pero no le veo la necesidad en el Ferrocarril a Escala N.

En el real si, para uso topográfico.

Ya nos contarás.
Saludos
Perdón. 
Inserté mal la imagen..
[attachment=35785]
Es la primera vez que oigo, o leo, sobre las cuerdas de las curvas.
Gracias por la información